Tesla – взгляд через замочную скважину на правильную систему

Всегда когда я разговариваю с человеком который хочет сделать новую систему распознавания я рассказываю о том что машинное обучение неидеально. Что всегда есть ошибки. Что всегда что-то будет идти не так. И что цель – не обучить один раз систему распознавания. А цель  – выстроить систему которая будет стабильна к любым ошибкам распознавания.

Continue reading “Tesla – взгляд через замочную скважину на правильную систему”

Double trouble

Где-то с прошлого года у меня лежали две недописанные статьи. На прошлой неделе собрался с силами и в выходные их добил. Одна статья про то, как каждый день я сталкиваюсь с хренью в своей работе. И о том насколько бажет человеческое восприятие когда дело доходит до технологий.
Статья традиционно на хабре – https://habr.com/ru/company/recognitor/blog/446038/
Вторая статья – экспериментальная. Она про то, что машинное обучение – очень сложная штука, зачастую в современных реалиях чересчур сложная – и её не нужно лепить направо и налево. Статья экспериментальная в том числе потому что публикую её на платформе где ни разу раньше не писал – https://vc.ru/life/63227-mashinnoe-zrenie-ne-nuzhno-o..

Обе немного не в формате блока, так что тут только ссылка.

Детектирование объектов. Как это сделать проще всего?

Давно я ничего не публиковал. Но в последнюю неделю набросал несколько статей, которые скоро выложу + записал это видео.
Как проще всего детектировать объекты? Почему обычно что-то не будет работать? Попытался максимально кратко записать гайд и ответить на вопросы.

MIPS 2019

На прошлой неделе сходил на Mips. Очень прикольно смотреть как год от года меняется стек основных технологий на выставке. При этом одно дело – изменение стека. А второе дело – изменение применения.
Ну, условно. За последние два года взлетели компании распознавания по лицу. Компании то взлетели. И на выставке появилось куча демо стендов с прикрученным face detection. Но вот до embedded устройств доступа технология дошла так, что практически нет изменений по качеству, применению, функционалу по сравнению с решениями два года назад, пять лет назад.
Реальному бизнесу не нужно распознавание лиц в толпе, которое не даёт 100% результата по огромной базе. Или нужно, но очень кастомное под бизнес задачу. А предложить что то базовое, что ощутимо изменит существующий стек технологий для 90%девайсов ntech вижнлабс и прочие не могут.
Или распознавание номеров. Как работало, так и работает. Нет новых решений, которые смогли закрыть новые ниши или создать их.
Ну, то есть они есть. Но они штучные и не на этой выставке. А масс продакшн как ест мутные плохо работающие системы, так и ест.
Менять систему и изобретать новое применение никто не готов.
К чему это все. Выставка отрезвляет. Ты понимаешь насколько все решения в мире стары и банальны. И как сложно что то изменить. Даже если технология новая и принципиально круче всего что есть, то люди не смогут её применить и найти новые смыслы.
Тем смешнее смотреть на выставке стенды по PoseRecognition где люди которые следят за экспозицией даже не могут ответить зачем нужно всё то что у них представлено.
Сначала думал записать на выставке видео.Но мне стало грустно – и не стал…:)

Почему не работает 3D сканирование

Есть одна огромная тема, которая лежит на границе старого машинного зрения, (где нет нейронных сетей и чистая математика), и нового машинного зрения, где всё делается сеточками.
Это 3D. Лезть в него без знания аналита, матана и теорвера – сложно. Но тем не менее, именно различные способы 3D сканирования – это единственное, что позволяет решать многие задачи. Тут я попробовал сделать кратенький обзор по тому какие способы существуют.

Портирование и ускорение

Нормальная часть любого процесса разработки любой нейронной сети – портировать её на нужную платформу. Конечно, мы обычно стараемся это не делать, завёртывать сети в облако, создавать облачные подключения, и.т.д.

Но иногда приходится. В этом видео я рассказываю о том, какие платформы могут быть, какие удобнее использовать, какие проблемы будут вас ждать.

Продолжаем в ютубчег

Итак. Сегодня поговорим почему системы распознавания номеров не работают на практике. И ведь проблемы опять те же самые, что и всегда! Плохое качество картинки, люди пытаются использовать оценочные суждения, не понимая что они могут быть неправы.

Заказчики в CV, какие они бывают

Эта статья – некоторое обобщение опыта, который появился у меня за последние лет 10. Я не претендую что он однозначно правильный. Или на то, что наша стратегия единственная рабочая. Но для себя я его использую как некоторую априорную оценку того имеет шанс на жизнь договор или нет.

Continue reading “Заказчики в CV, какие они бывают”

Новый формат?

Решил сделать несколько видео на те темы, на которые всё не хватает времени написать нормальную статью. Начнём с банальной темы по распознаванию по лицам!
Почему они не работают?

Как стать DS’ом за пять минут?

Обилие курсов по машинному обучению в последнее время поражает. Разве что на заборах не пишут “стань ML экспертом за пять минут” . Есть реклама на Хабр, таргетированная реклама вконтакте. Крупные институты создают открытые курсы. Число online платных и бесплатных лекций зашкаливает. Но есть ли смысл в этом всем? Имеет ли смысл идти на эти курсы? Может ли информация которую там рассказывают принести пользу?

Continue reading “Как стать DS’ом за пять минут?”